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Abstract 

Given the nonlinearity and uncertainty in the rainfall-runoff process, estimating or predicting hydrologic 
data often encounters tremendous difficulty. This study applied fuzzy theory to create a daily flow forecasting 
model. To improve the time-consuming definition process of membership function, which is usually concluded 
by a trial-and-error approach, this study designated the membership function by artificial neural network 
(ANN) with either a supervised or unsupervised learning procedure. The supervised learning was processed 
by the adaptive network based fuzzy inference system (ANFIS), while the unsupervised learning was created 
by fuzzy and self-organizing map (SOMFIS). The results indicate that the ANFIS method under increment 
flow data could provide more precise results for daily flow forecasting. 
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1.1 NTRODUCTION 

Due to Taiwan's distinctive landform and uneven distribution of rainfall in 
time and space, there exist sharp differences in river discharge. Consequently, it is 
important to model and forecast hydrologic data. In particular, the forecasting of 
river daily discharge is crucial to the distribution of water resources. Characterized 

Correspondence Address: Chang-Shian Chen, Department of Water Resources Engineering, Feng 
Chia University, 100 Wenhwa Rd., Seatwen, Taichung 40724, Taiwan. E-mail: cschen@fcu.edu.tw 

81 



PoRTUGUESE JOURNAL OF MANAGEMENT STUDIES, VOL. X//, NO. 2, 2007 

by high uncertainty and complications, the hydrologic phenomenon is difficult to 
describe comprehensively with simple differential equations or statistical analysis. 
Studying the system response through the stimulus-response phenomenon, the 
recently developed artificial intelligence- fuzzy theory in particular- has produced 
some favorable research results in the modeling and prediction of hydrological 
data because of its ability to deal with highly nonlinear and uncertain systems. 
Xiong (2001) applied fuzzy set theory to estimate daily river flux, while Chang et 
al. (1998) employed fuzzy theory in predicting flood discharge. 

However, determination of the membership function in fuzzy theory is a 
subjective definition based on personal understanding of the entire physical system 
such that the definition of membership function in turn affects the results of fuzzy 
inference. Consequently, recently artificial neural networks have been introduced 
for a more accurate membership function. Based on the learning process, artificial 
neural networks are categorized as supervised learning and unsupervised learning. 
Chang and Liang (1999) applied the adaptive network based fuzzy inference system 
(ANFIS) and employed the. supervised Back-Propagation Network ( BPN) to modify 
membership function. The study investigated the influence of the number of 
iterations on the estimation of discharge under a fixed number of membership 
functions. Chen et al. (2001) employed the unsupervised self-organizing mapping 
of neural networks coupled with fuzzy theory to establish a forecasting model for 
the flood discharge of Wu River. 

To study the application of a neural network on the determination of 
membership function in fuzzy theory, this study first employed ANFIS to forecast 
daily discharge with different numbers of membership functions. The combination 
of SOM and fuzzy theory was then applied to estimate daily discharge with different 
shapes of membership. Finally, comparisons of the results from the two methods 
were made to find their advantages and applicability. 

2. METHODOLOGY 

In this study, the Back-Propagation Neural (BPN) Network and self-organizing 
mapping (SOM), respectively, were combined with fuzzy theory to conduct discharge 
forecast. Detailed descriptions of the models are illustrated in following sections. 

2.1 Fuzzy theory 

First proposed by Zadeh (1965), fuzzy theory operates through the following 
steps. 
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(1) Fuzzification: The first step is to determine the definition domain of 
each variable based on the ranges of input and output variables in actual 
conditions. 

(2) Fuzzy rules determination and fuzzy inference: Based on the experience 
and knowledge of experts, the language rules of determination are 
transferred into the executable fuzzy syntax for inference. Fuzzy inference 
rules are usually written using the following syntax: 

I~ fuzzy proposition -til~ fuzzy inference--tl 

R;: if R1_2 is lltJ?
1
_

2
and M 1_1 is llM"

1
_
1 

then M tis llt.Et i = 1.2 .... ,n 

. 
where Ri is the ith fuzzy rule; i is the number of fuzzy rule; R

1
_
2 

and fl£1_1 are 
the input variables of fuzzy proposition; fl£1 is the output variable of 
fuzzy inference; and I-IR,_,.I-lu,_,.!-1,-.E, are the degrees of membership of 
fuzzy set. 

(3) Defuzzification: The fuzzy inference outputs are finally transformed back 
into crisp values. To do so, this study implemented the center~of-gravity 
method, which is simple and suitable for programming and execution. 
The calculation equation is written as follows: 

:t( J.I;XX;) 
M"t = i-1 n ,i = 1,2,3,-. ·n 

:L(J.I,) 
i=l 

where fl£1 is the output of fuzzy logic; 1-l; is the degree of applicability of 
the i1h proposition of fuzzy rule; and X; is the value corresponding to the 
center of the membership function for i

1
h proposition of fuzzy rule. 

2.2 Adaptive network based fuzzy inference system (ANFIS) 

Developed by Jang J.-s. R. of Tsing Hua University in Taiwan, the adaptive 
network based fuzzy inference system (ANFIS) is a fuzzy inference system executed 
in an adaptive network. It can establish an input-output relation through the back­
propagation process with an artificial intelligence style (if-then rules of fuzzy 
inference). In terms of modeling, ANFIS can easily establish non-linear functions, 
and it can forecast time sequence of no qualitative relations. Furthermore, ANFIS 
can identify the non-linear constitutive factors in a control system and produce 
favorable results in the fields described above (Jang, 1993; Nayak, 2004). 

A fuzzy inference system has, for example, two inputs, one output, five layers 
of framework (shown in Fig. 1), and two learning stages. In the first layer (input 
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layer), the input variables are mapped into fuzzy sets to estimate their degrees of 
membership with the designated membership functions. In the second layer (rule 
layer), the perquisite conditions of fuzzy logic rules are matched with input variables 
in order to obtain the weights, i.e., firing strength, of the rules which are the 
multiplication results of all inputs using the T-norm multiplication operation. In 
the normalization layer (the third layer), the relative ratios of weights of all rules 
are calculated for the nodes in this layer. Then, the relative weights are multiplied 
by the functions of factor sets in the conclusion inference layer (the fourth layer). 
In the last and fifth layer (output layer), all the information from the previous layer 
is aggregated to calculate the output variable, just as in the defuzzification procedure. 
From the calculation of the five layers, it is clear that the function of ANFIS is 
similar to that of Sugeno model (Nayak et al., 2004). 

FIGURE 1 

The framework of adaptive network based fuzzy inference system (ANFIS). 

X 

f 
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2.3 Self-Organizing Mapping (SOM) Network 

Self-Organizing Mapping Network is a model of unsupervised learning 
processes, proposed by Kohonen (1997), and it is still a paradigm of this kind. 
Rooted in the characteristics of brain structure, the basic principles of SOM imitate 
these characteristics, i.e. brain cells with similar function will aggregate, so that 
SOM can obtain training examples from the question domain and learn clustering 
rules from these learning examples. When the learning process of the network is 
finished, the output process units interact with each other so that, in turn, 
neighboring units will have similar functions, i.e. similar weights (Chen et al., 
2004). 
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The learning framework of SOM network, shown in Fig. 2, includes two layers: 
the input variables of the network - i.e. the input vectors of training model - are 
shown in the input layer; in the output layer, the clustering of training model will 
be output from the network. The latter layer is similar to the hidden layer of the 
BPN although it does not have the concepts of network topology and neighborhood. 

FIGURE 2 

The learning framework of Self-Organizing Map (SOM) Network. 

3. DEVELOPMENT AND APPLICATION OF MODEL 

3.1 Introduction of study field 

In this study, the Wu River basin was selected as study field for forecasting of 
flood discharge in watershed. Discharge data from discharge stations upstream 
(Dali River drainage: CeiNan Bridge Station; Maoluo River drainage: NaKung Bridge 
Station; Wu River main discharge in upstream: ChenFung Bridge Station) were 
used to forecast the daily discharge in the downstream of Wu River (Da-Du Bridge 
Station). The locations of the stations are shown in Fig. 3. 

3.2 Data processing 

Daily discharge data from four stations (CeiNan Bridge Station, NaKung Bridge 
Station, ChenFung Bridge Station, and DaDu Bridge Station) between 1990 and 
1999 were collected as learning data, while the daily discharge data from 2000 
to 2001 were taken as testing data 
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FIGURE 3 

The location of hydrological stations in the Wu Rive basin. 
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3 .3 Development of the modet 

3.3.1 Input data 

Instead of using the original discharge in previous studies, the differential 
values of discharge data at each station were transformed by linear transfer function 
(LTF) and then used to determine the most appropriate impact order on the discharge 
data of the outlet station. The results indicate that the daily discharge of the first 
order in CeiNan Bridge Station and NaKung Bridge Station, and that of the first 
three orders in ChenFung Bridge Station show significant influence on the discharge 
at DaDu Bridge Station. 

3.3.2 Framework of ANFIS model 

86 

(1) The operations in this study were conducted by the toolbox of ANFIS in 
Matlab. 

(2) The number of input membership functions with the shape of Gauss 
function was designated. The ordered data based on their input values 
were also divided into groups so that each group of data had one 
membership function. 

(3) The shape of MF was modified by back propagation approach. 
(4) Stop criterion for training iterations was set to 2000 based on the 

observation that the output and actual discharge data converged in a 
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stable manner with acceptable error when the number of learning iterations 
reached 2,000. 

(5) After setting the parameters, the increment discharge data were utilized 
for training. " 

(6) Fuzzy inference was then applied to the learning data and the testing 
data were used to forecast discharge in order to create a model. 

(7) In the study, suitability analysis on the number of Gauss functions in 
ANFIS was conducted to obtain the modules that performed best. With 
possible values from 3 to 6 for ChenFung Bridge, NaKung Bridge Station, 
and CeiNan Bridge Station, a total of 64 models were compared. 

The construction procedure is shown as Fig. 4. 

FIGURE 4 

The construction procedure for discharge estimation in ANFIS 
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3.3.3 Framework of SOMFIS model 

( 1) The classification operations of the three upstream stations were conducted 
using the SOM toolbox in Matlab. 

(2) SOM parameters, i.e. 0.9, 0.02,.and 5 were designated as learning speeds 
in the sequencing stage, tuning stage, and neighborhood in the tuning 
stage, respectively. A rectangular neighborhood was set as the initial 
topological permutation and Euclidean distance was used to calculate 
topological distance. 

(3) To minimize the number of the empty points in the topological network, 
a network of 12 x 12 was identified by some pre-tests. If any testing data 
fell into an empty point, the data were replaced by a topological network 
point with the shortest Euclidean distance. 

(4) According to observation, when the number of learning iterations reached 
2,500, the topological network had extended into a stable shape without 
significant change. Therefore, the stop criterion for training iterations 
was set to 2500. 

(5) After setting the parameters, the original and increment discharge data 
were utilized for training. 

(6) After SOM classification, it was found that one or more discharge data 
could fall into one topological point. The mean value and standard 
deviation of these discharge data were calculated such that the mean 
value was set as the center of the Gauss function and the standard 
deviation was the standard error of the Gauss function. The Gauss function 
was then designated as the MF function of the fuzzy inference at that 
topological point. 

(7) With the classification results from the previous procedure, the forecast 
outflow discharge was found by fuzzy inference. The model was named 
Gauss. 

(8) To increase the precision of the model under conditions of higher 
discharges, the membership functions numbered 100 to 144 of the SOM 
topological points were set asS functions, named as S-100 to S-144 (45 
in total), after sorting all the topological points. Fuzzy inference was 
subsequently conducted. 

The construction procedure is shown as Fig. 5. 

Since increment can be positive or negative, output with negative values 
could result from the increment learning and testing stages in ANFIS and SOMFIS 
models. Because it violates the physical interpretation, the negative discharge 
was replaced by base flow discharge. 
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FIGURE 5 

The construction procedure for discharge estimation in SOMFIS. 

Conduct SOM networking to classify learning 
data and then obtain parameters of memberships 

3.4 Assessment standard 

Input data not participating 
in learning into the 

established SOM network to 
obtain their classifications 

There are seven indexes for the assessment of the models presented in this 
study. 

(1) Correlation of efficiency (COR): If COR approaches 1, the discrepancy 
between the model's result and actual data is small, indicating higher 
accuracy. COR is calculated by following equation: 

COR= L(o0., -Cio.,Xo.,, -Ci.,,) 
~L(oo., -Oo•,fL(o.,, -o.,,f 

where, Qest is the estimated discharge from the model, Oest is the mean 
value of the estimates, Q b is the observed discharge, and aobs is the 

0 s 
average of observed discharge. 

89 



PORTUGUESE JOURNAL OF MANAGEMENT STUDIES, VOL X//, NO. 2, 2007 

90 

(2) Error of peak Discharge (EQp): If EQp >0, the estimated discharge peak 
is larger than the observed one; if EQp <0, the estimated discharge peak 
is smaller. EQp is calculated by following equation: 

EQ = Qpest - Qpobs 

P Qpobs 

where, Qpest and Qpobs are the model-estimated and observed peak 
discharges, respectively. 

(3) Error of time to peak (ETp) is calculated by the following equation and 
smaller I ETP I indicates a more accurate time to peak estimated by the 
model. 

ET = T -T p pest pobs 

where, Tpest and Tpobs are the model-estimated and observed time to 
peak flow, respectively. 

(4) Mean Absolute Error (MAE) indicates the discrepancy between forecasted 
and actual values, it is calculated by the following equation: 

where, M is~ the number of forecasted values, zt+, is the lth observed 
value, and Z1(t) is the lth estimated value. 

(5) Mean Absolute Percentage Error (MAPE) is another index for the 
discrepancy between forecasted and actual values, and the following 
equation can be used to calculate MAPE: 

where, M is the number of forecasted values, Z1+1 is the lth observed 
value, and Z1(t) is the lth estimated value. 

(6) Coefficient of Persistence (PC) in the k stage, i.e. PC(k), is calculated by 
the following equation. 
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If Qi1/k) equals Qi-k' the forecasted discharge of the ith stage can be 
obtained from that of i-kth stage under the assumption of persistence. If 
Qil/k) is zero, the forecasted discharge of the ith stage equals that of i-kth 
stage. If Qi1/k) approaches 1, the forecasted value from the model is 
more accurate than that obtained from the assumption of persistence. 

(7) Coefficient of Extrapolation (EC) at the kth stage, i.e. EC(k), is calculated 
using the following equation from Qi-k and Qi-k-l' i.e. the forecasted values 
of the ith stage and the i-kth stage. 

(Q. -Q.) Ln • 2 

EC(k) = 1- i=m+k I I "n 2 L...i=m+/Qi- Qi/e(k)) 

If EC(k) approaches 1, the forecasting value from the model is more accurate 
than that from the extrapolation. 

4. RESULTS AND DISCUSSION 

4.1 Adaptive network based fuzzy inference system 

For the increment discharges in this study, the best ANFIS model with the 
best COR index was the 656 learning model, i.e. the numbers of Gauss functions 
for ChenFung Bridge, NaKung Bridge Station, and CeiNan Bridge Station are 6, 5, 
and 6, respectively. The observations versus estimates in the learning and evaluation 
models of the 656 model are plotted as Fig. 6 to Fig. 9, while the assessment 
criteria of the provisional models are listed in Table 1. 

FIGURE 6 

Comparison between the observations and the estimated results of ANFIS in the 656 learning 
model 
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FIGURE 7 

Comparison between the observations and the estimated results of ANFIS in the 656 
evaluation model 
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FIGURE 8 

The hydrograph of ANFIS in the learning model 
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FIGURE 9 

The hydrograph of ANFIS in the evaluation model 
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TABLE 1 

The assessment criteria for learning and forecasting assessments in ANFIS 

Learning (1990-1999) Forecast assessment (2000-2001) 
Model Model 

COR EQP ETP MAE MAPE EC PC COR EQP ETP MAE MAPE EC PC 

333 0.71 ·0.184 ·1449 31.084 16.791 0.661 0.198 333 0.443 ·0.067 1 32.15 16.569 0.644 0.029 

444 0.715 ·0.263 ·1449 31.2 17.388 0.673 0.226 444 0.301 1.218 1 36.772 17.748 0.032 ·1.639 

555 0.737 ·0.203 ·1448 30.344 16.704 0.689 0.263 555 0.227 3.223 1 44.898 19.15 ·2.077 -7.386 

656 0.76 -0.23 ·1449 30.106 18.697 0.721 0.339 656 0.275 2.134 1 44.062 20.968 -0.835 -4.001 

666 0.719 -0.216 -1449 30.602 17.326 0.678 0.236 666 0.267 1.768 1 38.698 18.271 -0.4 -2.815 

In the learning stage for ANFIS with increment discharge, the 656 model 
performed the best with the COR between 0. 760 and 0708, the 653 model 
outperformed the other models with the MAE between 32.076 and 28.620, and 
the 656 model performed the best with the EC values of 0.661 to 0. 721 and the 
PC values between 0.339 and 0.198. Consequently, the 656 model was selected 
as the representative model. However, its simulation results in the evaluation 
stage were not favorable, as shown in Fig. 7; the 333 model had better results, as 
indicated in Table 1. 

4.2 Fuzzy and Self-Organizing Map (SOMFIS) 

The estimated results by SOMFIS in the learning and evaluation models are 
plotted against observations shown in Fig. 10 to Fig. 13. The assessment criteria 
of the models are listed in Table 2. 

FIGURE 10 

Comparison between the observations and the estimated results of SOMFIS in the learning model 
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FIGURE 11 

Comparison between the observations and the estimated results of SOMFIS in the evaluation model 
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FIGURE 12 

The hydrograph of SOMFIS in the learning model. 
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FIGURE 13 

The hydrograph of SOMFIS in the evaluation model. 
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TABLE 2 

The assessment criteria for learning and forecast assessment in SOMFIS 

Model 
le.lrning {1990-1999) 

Model 
Forecast assessment {2000-2001) 

COR EQP ETP MAE MAPE EC PC COR EQP ETP MAE MAPE EC PC 
gauss 0.67 ·0.076 1 36.894 22.544 0.602 0.056 gauss 0.382 .0.023 1 46.145 38.217 0.626 .().019 
S-100 0.662 ·0.076 1 40.352 27.664 0.577 .0.003 S-100 0.441 0.087 1 47.388 36.377 0.571 .().17 

S·llO 0.668 -0.076 1 38.952 24.588 0.589 0.026 S.llO 0.434 ·0.023 1 45.588 37.109 0.624 ·0.025 
S-120 0.668 ·0.076 1 38.887 24.448 0.589 0.027 S-120 0.423 ·0.023 1 45.754 37.369 0.624 ·0.026 
S-130 0.668 ·0.076 1 38.544 24.224 0.591 0.03 S-130 0.409 ·0.023 1 45.884 37.606 0.624 ·0.026 
S-140 0.669 ·0.076 1 37.109 22.932 0.601 0.055 S.140 0.392 ·0.023 1 45.887 37.842 0.626 ·0.019 
S-141 0.669 ·0.076 1 37.093 22.879 0.601 0.055 S-141 0.39 ·0.023 1 45.917 . 37.868 0.626 -0.019 
S-142 0.67 ·0.076 1 36.996 22.756 0.602 0.056 S-142 0.388 ·0.023 1 45.985 37.979 0.626 ·0.018 
S·l43 0.67 ·0.076 1 36.995 22.754 0.602 0.056 S.143 0.386 ·0.023 1 45.976 37.97 0.626 -O.Dl8 
S-144 0.67 ·0.076 1 36.933 22.633 0.602 0.056 S-144 0.384 ·0.023 1 45.976 37.97 0.626 ·0.018 

When learning classification of fuzzy inference in SOMFIS, the Gauss model 
performed the best with COR, MAE, EC, and PC values of 0.67-0.662, 
40.35-36.89, 577-0.602, and -0.003-0.056, respectively. However, the 
simulation results of the Gauss model were not favorable, as shown in Fig. 11. 
The S-100 model had better evaluation results than the others, as indicated in 
Table 2. 

4.3 Discussions 

Since ANFIS represents each input variable with several membership functions, 
ANFIS is able to grasp variations in hydrological events on the basis of other 
combinations of hydrological events. By contrast, SOMFIS is an overall classification 
method for learning events where fewer membership functions can reflect the 
variances of the variables, and this caused larger inference errors with off-peak 
results. 

In this study, there were more low discharge data than high discharge data. 
Since SOM is an unsupervised learning procedure, the distribution of topological 
classification for low discharge data was' denser and more sensitive, which easily 
led to errors in inference results. On the other hand, fewer high discharge data 
resulted in insufficient classifications and larger errors in forecasting. 

The results using ANFIS or SOMFIS showed that successive large discharges 
often resulted in under-forecasting since most learning data indicated that a smaller 
discharge would follow a larger one. 

In Taiwan, rainfall usually affects the river discharge in a few hours only. 
Consequently, the daily discharges of a few days beforehand are generally ordinary 
in value regardless of whether the discharge forecasting is high or low. Therefore, 
the SOMFIS classification of daily discharge may produce an output discharge of 
high or low value depending on the rainfall of that rainy day, despite the same 
input discharges of previous days. The consequence of this averaging effect leads 
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to slightly higher forecasting on small discharges and slightly lower forecasting on 
large discharges. 

With intense and abrupt rainfall in Taiwan, sudden increases in discharge 
cannot be reflected in the previous daily discharges at the upstream stations. The 
model, therefore, failed to forecast a sudden increase in discharge due to a typhoon 
or storm, and this resulted in a one order delay in the ETP index. 

A sudden increase of discharge due to a typhoon flood generates the points 
showing a large deviation under the diagonals in Figs. 6, 7, 10, and 11 for the one 
order delay in the model. The model received the input of a large discharge the 
following day when the discharge had in fact decreased, and this led to the 
occurrence of points with large deviation over the diagonals in the figures. 

5. CONClUSIONS AND SUGGESTIONS 

Even with annual precipitation over 2,500 mm, most of the runoff from the 
rainfall in Taiwan will drain into the oceans within hours if no facility of flow 
control or storage is applied along the river system. Over 80% of the annual 
precipitation is concentrated in the rainy season, i.e., from July to October, and it 
causes a water resources management problem of whether to retain or release the 
discharge during and after the storm events. The forecasting of the daily discharge 

· based on rainfall records will provide essential information for better decision­
making on the balancing of water resources utilization and disaster prevention. 

In this study, ANFIS using different number membership functions and SOMFIS 
using increment discharge data were compared, and the results indicated that the 
ANFIS method provides more accurate results on daily discharge forecasting. Since 
the runoff from rainfall in Taiwan usually lasts a few hours, the input data do not. 
correlate well with the outputs of the two models employed in the study. In large 
watersheds, the higher discharge can last for a few days, and thus the model is 
expected to perform better and the one order delay can be improved. 

Because SOMFIS can only take one classification and one Gauss function for 
fuzzy inference, errors often occur during off-peak conditions. Therefore, the original 
classification along with the classifications within the vicinity of the Euclidean 
distance can be included into membership functions to enhance the accuracy of 
off-peak forecasting. Since there were only a few topological classifications in 
SOMFIS, a large discharge tended to be under-estimated. If the number of 
topological classifications can be increased, flood peak forecasting can be improved. 

The sharp increase of typhoon flooding results in poor forecasting of daily 
discharge. To improve the accuracy of forecasting, the authors suggest that typhoon 
flood data over the years should be separated so that another forecasting model 
can be developed and used for forecasting during typhoon events. 

96 



PORTUGUESE JOURNAL OF MJWAGEMENT STUDIES, VOL. X//, NO. 2, 2007 

References 

Chang-Shian Chen, K.-C. T., Yin-Long Huang (2001). Neural-Fuzzy Network Algorithm Apply to 
Forecast Catchment's Outflow. Journal of The Chinese Institute of Civil and Hydraulic Engi­
neering, 13(2), 395-403. 

Chang-Shian Chen, Q.-J. W., You-Da Jhong (2004). Use Recurrent Neural Network at Daily Stream 
Flow Forecasting Application. Journal of Chinese Soil and Water Conservation, 35(3), 187-
195. 

Fi-John Chang, J.-M. L. (1999). A Study of Artificial Neural-Fuzzy inference Model for Hydrosystems. 
Journal of Taiwan Water Conservancy, 47(2), 1-12. 

Jang, J.-s. R. (1993). ANFISAdaptive-Network-Based Fuzzy Inference System. IEEE Trans. Sys­
tems, Man, and Cybernetics, 23(3), 665-685. 

Kohonen, T. (1997). Self-Organizing Map. New York: Springer-Verlag. 
Liang-Cheng Chang, C.-C. Y., Chang-Shian Chen (1998). Application of Fuzzy Control Algorithm on 

Flood Forecasting. Paper presented at the The 9th Hydraulic Engineering Conference. 
Lihua Xiong, A. Y. S., Kieran M. O'Connor (2001). A non-linear combination of the forecasts of 

rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system. Journal of Hydrology, 
245, 196-217. 

P.C. Nayak, K. P. S., D, M. Rangan, K.S. Ramasastri (2004). A neuro-fuzzy computing technique for 
modeling hydrological time series. Journal of Hydrology, 52-66. 

Zadeh, L. A. ( 1965). Fuzzy sets. Information And Control, 8, 338-353. 

Resumo 

A nao linearidade e a incerteza dos diversos processes de previsao dos dados hidrol6gicos tem 
criado enormes dificuldades. Este estudo aplica a teoria fuzzy para criar um modelo de previsao de fluxo 
diario. Para 0 processcf de defini~<aO da fun~ao de perten~a. 0 qual e geralmente recorre a abordagem da 
tentativa e erro, o presente estudo utiliza Redes Neuronais com processo de aprendizagem supervisionada 
e nao supervisionada. 0 processo de aprendizagem foi processada par uma rede adaptativa baseada num 
sistema de inferencia fuzzy, enquanto a aprendizagem nao supervisionada foi criada par fuzzy and self­
organizing maps. Os resultados indicam que o sistema de inferencia fuzzy com incremento de fluxos de 
dados da resultados mais precisos para a previsao do fluxo diario. 

Palavras chave: Teoria fuzzy; Redes Neuronais; Discharge Forecasting; Self-Organizing Maps. 
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